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This study investigated the effects of grazing by rabbit and insect herbivores on root-

colonization of grasses by arbuscular mycorrhizal fungi (AMF) in two lowland grasslands in 

southern England, UK.  A temporal assessment from grazing exclosures was also made.  Root 

samples from three grass species at each site were analyzed in terms of total mycorrhizal 

colonization and proportional colonization by individual mycorrhizal structures.  Colonization 

was increased by moderate levels of rabbit grazing at both sites.  The change was fast, 

consistent throughout the sampled field plots, and temporally sustainable.  There was no 

significant effect of insect herbivory on total colonization but proportional colonization by 

different AM structures was affected on some sample dates where vertebrate herbivores had 

been removed, indicating a herbivore-dependent effect on the degree of benefit within the 

plant-fungal partnership.  The results suggest that the type of herbivore and defoliation 

intensity to which plants are subjected are key determinants of below-ground effects upon 

mycorrhizal-host plant symbiosis.  This information has strong implications regarding 

restoration and management of grassland ecosystems. 

 

Keywords  arbuscular mycorrhizal fungi, grassland, grazing, insect, rabbit. 

 

Introduction 

Grasslands (and interactions therein) are an important focus of ecological studies since they 

comprise a large proportion of terrestrial global ecosystems.  Temperate grasslands comprise 

about 32% of the natural vegetation on earth and typically have a long history of co-evolution 

with grazing herbivores (McNaughton 1984).  There is also an increasing awareness that 

grazing impacts directly and indirectly upon below-ground soil floral and faunal populations 

and food webs (e.g. Bardgett et al. 2001). 
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The European Rabbit (Oryctolagus cuniculus L.) has been a resident in Britain since it was 

introduced by the Normans in the 12
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th Century but has experienced major population 

fluctuations since then, with the British population numbering approximately 37.5 million in 

1999 (Toms et al. 1999).  Densities in British grasslands can vary from 0 to 100 per hectare 

but are usually in the range 0.5 to 15 individuals per hectare (Corbet and Harris 1991).  The 

impact of rabbits is varied and seems to fall along a continuum from beneficial to detrimental, 

dependent on habitat (grasslands versus agricultural land) and grazing intensity.  They are 

thought to have played a significant role in the shaping of the British countryside over the 

centuries since their introduction and are considered a keystone species in the maintenance of 

grasslands in southern England (Crawley 2004).  Despite this, there has been little 

investigation of their impacts upon below-ground parameters, contrasting to the number of 

studies involving larger agricultural grazers such as sheep and cattle (e.g. Bardgett et al. 

2001).  Above-ground phytophagous insects represent a lower total herbivore biomass than 

vertebrates and generally remove smaller quantities of vegetation.  However, as a group they 

are much more diverse in their modes of feeding and degree of specialism.  Invertebrates can 

influence a wide range of aspects of ecosystem functioning; for example affecting succession 

(Brown and Gange 1999), and changing root exudation, phytomass, and activity of 

decomposer organisms (Wardle and Bardgett 2004).   

Rabbits and insects can have important and often contrasting impacts on plant community 

structure and succession (e.g. Edwards et al. 2000) so it might be expected that their effects 

on AM fungi may also differ.  Insect exclusion effects take longer to become apparent (Brown 

and Gange 1999), thus effects on AMF fungi might also take longer.  However, to date, 

experiments have only involved either invertebrate or vertebrate herbivore impacts on 

mycorrhizas.  In most grasslands, herbivory of both types is common and thus in order to 
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understand herbivore effects on multi-level interactions and ecosystem processes we must 

consider both types of herbivory simultaneously. 

Arbuscular mycorrhizal fungi (AMF) form a dominant component of rhizosphere 

microfloras and can constitute up to 25% of the total microbial biomass and they are present 

in almost all natural and semi-natural grasslands (Read et al. 1976), with significant 

ecological importance at the level of the individual, community and ecosystem.  AM fungi 

confer a wide range of benefits upon plant hosts, including increasing the nutrient absorptive 

capacity of plant root systems (Marschner and Dell 1994), acquisition of otherwise 

unavailable nutrient forms (e.g. Jolicoer et al. 2002), drought resistance (e.g. Gemma et al. 

1997), enhancements of plant growth and vigour (e.g. Koide and Lu 1992) and suppression of 

pathogens (Newsham et al. 1995).  There are also a variety of differing effects upon 

invertebrate phytophages (Gange 2006).  Mycorrhizas have also been found to be responsible 

for determining plant biodiversity and community structure (van der Heijden et al. 1998). 

It has often been reported in the literature that defoliation reduces root colonization by 

mycorrhizal fungi (Gehring and Whitham 1994; Gange et al. 2002).  The mechanism is 

thought to be one of carbon limitation in the host plant (Gehring and Whitham 2002).  

However, there is some evidence that this may not always be the case (e.g. Eom et al. 2001; 

Kula et al. 2005; Mikola et al. 2005).  In some circumstances defoliation may have no effect, 

or even increase the degree of colonization by these fungi.  Published results to date are 

therefore, extremely varied.  If carbon limitation below-ground (largely through root 

exudation) is caused by reduced photosynthetic biomass aboveground under intense 

herbivory, it is possible that where herbivory is at low to moderate levels it could be 

beneficial to plant-microbial interactions through enhanced root exudation.  For example, 

Bardgett et al. (2001) found that soil microbial biomass peaked under light grazing and was 

lower in soil from which the sward had been ungrazed or intensely grazed by sheep.  It is 
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possible that a curvilinear response to grazing intensity exists with plant-mycorrhizal 

interactions such as that proposed for primary productivity (Dyer et al. 1982). 

This study was carried out to ascertain whether mycorrhizal colonization within roots of 

grasses in two typical lowland UK grasslands was reduced, unaffected, or increased by above-

ground herbivory.  Furthermore, we quantified effects over time to see whether responses 

were transient and recorded mycorrhizal presence in terms of the types of structures 

encountered in order to assess whether herbivory caused a change from mutualism to 

parasitism along the mycorrhizal benefit continuum (Gange and Ayres 1999).  We report 

herbivore effects on mycorrhizas using two exclosure experiments.  One excluded each 

herbivore in a factorial design, while the second used a long-term rabbit grazing removal field 

site where consistency of trends could be investigated further.  If removal or manipulation of 

levels of grazers enhances plant-AM association as has been found in some other ecosystems 

(Gehring and Whitham 2002) then this may provide a beneficial management strategy for 

increasing the ability of grasslands to tolerate drought stress with climate change, and other 

myco-induced alleviation such as enhanced pathogen resistance, that AM fungi can confer 

(REF).  This work has important implications for management of natural and semi-natural 

grasslands since most current management strategies focus solely upon above-ground controls 

and response parameters without considering below-ground microbial associations.  

Maintenance of a positive AM-plant association in field situations is key to plant community 

functioning (Jeffries et al. 2003).  Thus, elucidating impacts upon this below-ground 

interaction is essential to ecosystem conservation and restoration. 

 

Materials and Methods 

 

Multi-herbivore exclusion experiment 
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The field site used for the combined rabbit and insect manipulation experiment was located at 

Royal Holloway, University of London (RHUL) in Egham, Surrey, UK.  The site experienced 

an annual rainfall of approximately 635-653mm and was a typical temperate climate old field 

lowland grassland on a nutrient poor acidic sandy loam soil, with a soil organic matter content 

of approximately 6-7% and average bicarbonate extractable phosphate content of 20 mg P kg
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1 and nitrogen content of 4 mg NO3
- kg-1 (Wearn 2006).  At RHUL there were approximately 

5-7 rabbits ha-1 with approximately 20-35 herbivorous insects (of all taxa) m-2 recorded from 

vortis suction sampling.  Herbivorous insects were dominated by hemiptera, sminthurid 

collembola and orthoptera (during summer), with much lower representation by lepidopteran 

larvae and molluscs. 

The field had been managed every year prior to the commencement of the study by 

mowing to an even sward height of 30-40mm during spring and summer (in addition to the 

constant rabbit presence).  However, once the study had begun the experimental area 

experienced no further anthropogenic management.  The plant community before treatments 

were started was a relatively homogeneous and fairly species-poor grassland.  The sward was 

dominated by two perennial grass species, Anthoxanthum odoratum (L.) and Holcus lanatus 

(L.) with smaller patches of Agrostis tenuis (Sibth.) [= A. capillaris (L.)].  Forbs were at much 

lower densities and as such were not included in this study since they were not present in 

sufficient numbers of subplots to obtain analyzable replicate data. 

Field manipulations of both rabbits and insects were established in April 2003.  The 

experiment consisted of four different treatments; exclusion of insects and/or rabbits, plus a 

control with all herbivores present.  A randomized block design was set up, containing six 

replicates of each treatment.  Each treatment plot measured 2 m x 2 m.  Rabbits were 

excluded with 2.5 cm wire mesh fences, extending 0.3 m below ground and 1m above.  

Insects were excluded by applications of imidacloprid (marketed as Provado Ultimate Bug 
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Killer (Pbi, Cambridge) every four weeks.  This was used at the label rate of 15 ml 

concentrate in 1 l water.  Imidacloprid has been proven as an effective systemic control of a 

range of invertebrate phytophages (Mullins 1993) and its toxicity to vertebrates is low (Anon. 

2006) so non-target effects on the rabbit population also grazing in the same sward were 

negligible.  The insecticide was translocated acropetally within the plant so light spray 

application was used to avoid insecticide contact with the soil (which would be caused by 

drenching) and ensured the chemical remained in the above-ground plant tissues.  Non-target 

fertilization affects of the insecticide upon mycorrhizal colonization were assessed in a 

controlled trial and no significant impacts were found, neither were any effects on plant 

community observed in the field.  Efficacy of the insecticide was assessed throughout the 

experiment by suction sampling of aboveground invertebrates in all treatments. 

Sampling was carried out every 6-8 weeks from April 2003 to January 2005.   Cores were 

removed from the ground with a 4.5 cm diameter corer to a depth of 10 cm.  Core removal 

was randomized within each sub-plot, although mole hills, where present, were avoided.  

Holes left by core removal were filled with sand.  This was to prevent the soil from drying 

out, and washed sand was used instead of soil from nearby, to minimize the extent to which 

non-native organisms were introduced by back-filling.  A pre-treatment sample was taken in 

April 2003, just prior to the first insecticide application and fence erection, which provided 

baseline data for the study.  Above-ground plant biomass estimates were made by drying live 

material taken from each core by heating to 70oC for 48 hours.  Root biomass was assessed by 

extraction of clean roots from soil particles (Kelly 1975), dried as before and weighed.   

An equal subsample of each root system was used for mycorrhizal quantification.  Roots 

from each grass species were carefully removed with forceps, rinsed with water and placed 

into 5 ml wells in repli-dishes.  Roots were only taken from the bases of identified plants 

rather than trying to identify unattached roots by morphology.  Only the younger roots were 
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selected since mycorrhizas could only be observed in the actively growing roots due to short 

lifespan of some structures, especially arbuscules. 

The Quink™ root-staining method was used, based on that devised by Vierheilig et al. 

(1998) with modifications.  Roots were cleared in 5% (w/v) KOH at room temperature and 

left overnight.  They were then washed with tap water and transferred to 1% HCl for 15 

minutes to ensure they were adequately acidified for staining.  Acidified roots were 

transferred to staining solution (a mixture of water:HCl:QuinkTM in the ratio 95:5:1) and left 

for an hour.  QuinkTM permanent blue was used as it gave the clearest results.  After an hour 

all roots were transferred to destaining solution (glycerol:water:1%HCl in the ratio 70:23:1).  

Again they were left overnight, to allow excess stain to leach out of the roots. 

Quantification of mycorrhizas was undertaken using the magnified intersection method of 

McGonigle et al. (1990).  The slide was scanned methodically and counts of percentage root 

length colonized (%RLC) were carried out.  Presence or absence of mycorrhiza was scored 

each time a root was crossed by a cross hair axis.  In addition to a total percentage figure for 

mycorrhizal colonization, the types of structure encountered (vesicle/internal spore (V&S), 

arbuscule (A), or intraradical hypha (H)) were recorded as these can yield vital information 

about the state of the symbiosis occurring (Klironomos et al. 2004).  Values for these 

structures were converted to a proportion of the total mycorrhizal presence within the root 

system for ease of comparison of the symbiosis across data sets.  At least 100 intersections 

per slide were recorded to ensure accuracy of the data yielded. 

 

Long-term grazing exclusion experiment 

To examine temporal effects of rabbit exclusion, long term plots were sampled at Silwood 

Park near Ascot, Berkshire, in southern England.  Exclosures had been set up at Silwood over 

a longer period of time than at RHUL, ranging from 1 year to 19 years of age.  This allowed 
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both long- and short-term effects of grazing exclusion to be assessed by sampling plots and 

adjacent grazed areas over a temporal gradient.  In addition, the youngest exclosures could be 

directly compared with data from RHUL.  At Silwood, rabbit populations were greater than 

10 individuals ha
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-1.  The sampled Silwood field plots possessed similar swards to those at 

RHUL, except Holcus mollis (L.) occurred instead of H. lanatus.  Soil characteristics were 

also equivalent (Edwards et al. 1999).  Thus the two sites were ecologically similar, so that 

comparisons could be made between them. 

Exclosures at Silwood Park had been erected in a similar way to those at RHUL, excluding 

rabbits but not smaller vertebrates or invertebrate phytophages (Edwards et al. 2000).  Plots 

sampled were 1, 13, 15, 16, and 19 years post exclusion.  There were no suitable plots of 

intermediate age where no fertilization or pesticide application had taken place.  The newest 

plots could be directly compared with the field site at RHUL, whilst the remainder gave an 

indication of how the effects may change over time as succession took place in exclosures 

relative to the rabbit-grazed grassland.  Two samples were taken at Silwood, one in early July 

2004 and the other in early December 2004.  To aid quick identification of grass species for 

the subsequent December sample when no easily recognizable inflorescences would be in 

view, 1 m bamboo canes were pushed into the field soil adjacent to known species at the end 

of the July sampling.  Samples of the three grass species described above were removed from 

exclosures and adjacent grazed grassland (randomly selected where abundant, semi-randomly 

selected where only a few individuals were present) with a 4.5 cm x 10 cm corer.  Cores were 

also taken from four intensely grazed areas (with a sward height of 10-16 mm compared with 

50-90 mm from moderately grazed grassland), adjacent to four of the sampled plots.  

Mycorrhizal quantification followed the same method as stated for the RHUL root samples. 

 

Data Analysis 
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All mycorrhizal data were transformed prior to statistical analysis using an arc sine 

transformation (Zar 1999).  Repeated measures analysis of variance (ANOVA) was 

performed on biomass and colonization data from RHUL using the UNISTAT
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package.  Data for each grass species were analyzed according to dates with rabbit and insect 

exclusion as main effects.  Set-point dates were also individually analyzed (for proportional 

colonization) with separate ANOVAs to further elucidate insect effects.  Because pairs of 

plots in each age group were sampled at Silwood, but plots of the same age were spatially 

separated (thus local environmental factors could have influenced data), a mixed within-

subjects factorial design analysis of variance model (Keppel et al. 1980) was performed to 

elucidate the effects of grazing and plot age, and to identify if any interaction terms existed 

between the two. 

 

Results 

Efficacy of the insecticide was found to be high.  Invertebrate phytophage densities in 

insecticide treatments were reduced by 94.75% (± 5.25%) from approximately 25 m-2 to 

almost zero.  Thus, insect exclusion treatments were successful (Wearn 2006). 

At RHUL, the initial sward was mown to approximately 30 mm prior to the study so foliar 

biomass was low (Fig. 1).  Sward heights and biomass subsequently increased and varied 

seasonally but not between insect exclusions.  Mean heights were 400-600 mm inside 

exclosures by July 2004 (some inflorescences of H. lanatus up to 900 mm) and 80-110 mm 

outside exclosure fences.  The impact of rabbit herbivory by this time was dramatic (p < 

0.001), causing reductions in foliar biomass compared with exclosures (Fig. 1).  Root biomass 

was not found to be significantly reduced by grazing treatments relative to ungrazed controls 

(p > 0.1, data not displayed). 
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In all three grass species, total mycorrhizal colonization levels (Fig. 2a, b, c) were 

consistently higher where the above-ground vegetation was grazed by rabbits, irrespective of 

the presence or absence of insects (all p < 0.001).  There were no significant effects of insect 

exclusion on total colonization levels over the duration of the study (all p > 0.3).  Fig. 2 shows 

that the response of the AM fungal community was rapid (within eight weeks) following 

removal of mowing and erection of exclosures.  There was also a strong seasonal effect (p < 

0.001) on total colonization patterns.  Peaks (although not in the same month each year) were 

in summer or early autumn, with winter and spring minima. 

When proportions of AM structures within roots were considered (Fig. 3, 4, 5), for the 

experimental duration as a whole there were no significant treatment effects (p > 0.1).  

However, when set-point dates were individually analyzed, significant differences between 

proportional representation by arbuscules (Fig. 3a, b, c) were found in September 2003, 

January 2004, and April 2004 for A. odoratum and A. tenuis (all p < 0.01).  These differences 

occurred where insects alone were present.  Proportional colonization of H. lanatus showed 

significant differences only in the last two of these dates (both p < 0.01) with significantly 

lower arbuscular proportions where only insect herbivores were present above-ground.  

Proportions of vesicles and spores (Fig. 4a, b, c) were correspondingly greater in ‘- rabbits + 

insects’ treatment plots in January 2004 for all three grasses (A. odoratum and H. lanatus p < 

0.01, A. tenuis p < 0.001) and in April 2004 for A. tenuis (p < 0.01).  Proportions of hyphae 

(Fig. 5a, b, c) showed much more similar levels within roots between treatments.  Overall at 

RHUL, H. lanatus appeared to demonstrate the least response to above-ground insect attack, 

whilst A. tenuis showed the most. 

At Silwood, moderately grazed sward heights averaged between 50-90 mm (mean 73 mm).  

Unfortunately A. odoratum was absent from the 1 year exclosures.  There was no significant 

effect of exclosure age on colonization of A. odoratum, A. tenuis, or H. mollis in either sample 
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(Table 1).  There was however, a highly significant positive effect of grazing on mycorrhizal 

colonization of two out of three grass species at each sampling time (Table 1).  A greater 

colonization of grazed samples relative to adjacent ungrazed exclosures existed in the 

majority of soil samples.  Although shown as non-significant in Table 1a, the July data for H. 

mollis did show a statistically weak positive effect of grazing (p = 0.1).  Overall, mycorrhizal 

colonization of A. odoratum showed the most consistent positive effect of rabbit grazing.  

There were no significant interaction terms between grazing and plot age. 

Samples taken from intensely grazed areas at Silwood had a sward height of between 10 

mm and 16 mm whilst ungrazed swards were approximately 450-500 mm.  Mean colonization 

levels for the intensely grazed sward were used for analysis, as all species in the intensely 

grazed sward areas showed very similar levels of colonization.  Plots of differing ages could 

be directly compared to adjacent grazed areas since it had been established that there was no 

significant effect of exclosure age on colonization patterns.  Two distinct response types could 

be identified in mycorrhizal samples from high grazing intensities.  In the first response type 

there was a lower total AM colonization under intense grazing than where moderate grazing 

occurred (p < 0.001), with no significant change in proportional representation of internal 

mycorrhizal structures in the roots at any grazing intensity (p > 0.8).  Thus, in this scenario 

total but not proportional colonization appeared to be grazing intensity-dependent.  In the 

second response type no significant difference in colonization between highly and moderately 

grazed swards occurred (p = 0.9), but there was a higher proportional representation by 

hyphae (p < 0.05) and lower representation by arbuscules (p < 0.01) within roots at the high 

grazing intensity. 

 

Discussion 
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It is clear that rabbits have dramatic effects on AM colonization in the field while 

invertebrates have considerably less effect.  Moderate grazing by rabbits had a rapid and 

persistent positive effect on mycorrhizal colonization of roots of the three grasses studied.  

Furthermore, proportional colonization by different mycorrhizal structures was altered by 

invertebrate grazing where vertebrate herbivores had been removed, indicating effects upon 

the form of the symbiosis that were dependent on the type of herbivore. 

In the RHUL field site at the onset of the experiment, Holland and Detling’s (1990) theory 

of carbon limitation seemed to hold true, which was that removal of nearly 90% of the above-

ground foliage from the sward by a combination of both grazing and mowing resulted in so 

much loss of biomass that carbon-limitation below-ground came into play.  At such high 

intensity defoliation the majority of carbon resources were likely to have been allocated to the 

shoots for regrowth.  Subsequently, AM colonization was low because of the low availability 

of photosynthate below-ground to stimulate and maintain the symbiosis with the host plants.  

After the release from mowing, the degree of mycorrhizal colonization of both the grazed and 

ungrazed plots showed a significant increase, though the increase was always greater in 

grazed plots.  By the eighth week of the RHUL field experiment, colonization levels in rabbit 

grazed plots were already approximately 30% greater than in excluded plots, indicating that 

the AM response was rapid.  After less than three months, rabbit grazed plots had a foliar 

biomass of approximately 35-40% less than the ungrazed sward, by which time AM 

colonization levels were around 40% higher.  This trend remained for the duration of the 

experiment with seasonal fluctuations in all treatments.  Moreover, colonization levels in 

rabbit grazed treatments were not increased simply by a reduction in root mass as no 

significant differences in root biomass between treatments was found (Wearn 2006). 

The fertility of the soil may have been an important factor influencing the effects of 

herbivory on AM colonization.  Although factors limiting photosynthesis above-ground 
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generally cause an increased proportion of total assimilate allocated to shoots (for regrowth), 

if factors affecting the below-ground uptake are in short supply (such as N and P in the sandy 

loam soil at RHUL) an increased proportion of total assimilate is translocated to the roots 

(Estes et al. 1982).  Thus, if both above-ground (AG) and below-ground (BG) stresses occur 

simultaneously there must be a trade-off between the needs of each.  It is possible that this 

trade-off was ‘satisfied’ by the grasses diverting sufficient resources BG to recruit AMF, thus 

increasing colonization (Giovanetti and Sbrana 1998).  This would have allowed the plants to 

extend their BG uptake network by the use of AM hyphae.  It is also probable that the loss of 

carbon to the BG zone for AM recruitment was less than the cost for increasing root growth to 

source nutrients (Fitter 1991).  Gemma et al. (1997) showed that benefits of AM fungi were 

only conferred when Agrostis palustris (L.) was grown in a low fertility substratum.  Further 

to this, Johnson et al. (1997) argued that carbon allocated to support mycorrhizas is only a 

cost to the plant if it could have been allocated to enhance plant fitness.   In addition, any 

resources gained through the activities of a fungal symbiont are only beneficial if they are in 

limiting supply to the plant.  In the RHUL field site soil nutrients were low, and high 

proportions of arbuscules observed in roots indicated that increased colonization levels under 

rabbit grazing were beneficial to both partners in terms of the mutualism.  It should be noted 

that nutrient enhancements in grazed treatments (and their impacts upon mycorrhizal 

colonization), following natural additions of faeces and urine were considered.  Field 

assessments of faecal deposition and a controlled experiment investigating impacts of total 

excreta at field levels were carried out (Wearn 2006).  The increase in mycorrhizal 

colonization levels in grazed treatments was not found to have been attributable to excretory 

inputs (Wearn 2006).  Instead, it was a response to the above-ground defoliation. 

Defoliation of grasses can cause greater exudation of carbon in the form of simple 

carbohydrates (Paterson and Sim 1999) and so increases in root exudation would likely have 
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followed an increase in below-ground allocation of carbon.  Increased colonization of roots by 

AMF could have been stimulated in this way as attraction of mycorrhizal hyphae to roots 

would have been enhanced through an increase in the exudate content of the rhizosphere and 

surrounding soil (Giovannetti and Sbrana 1998).  Both quality and quantity of exudates seem 

to be important in the dynamic interaction between plant and AM fungus (Elias and Safir 

1987; Jones et al. 2004). 

Each of the three grass species showed similar responses in colonization levels.  Although 

rabbits are often selective herbivores (Diaz 2000), all grass species were grazed, so 

colonization levels do not seem to reflect any impacts of selective feeding by the rabbit 

population.  Spring colonization levels were low and can partly be explained in terms of root 

elongation.  Roots were rapidly growing at this time of year and outstripping the rate of 

colonization by the AM fungi (Titus and Leps 2000). 

Seasonality of AM colonization was very similar for each of the grass species so this was 

not indicated by colonization data alone.  However, the level of colonization peaked earlier in 

all species in the absence of all herbivores (most clearly seen in A. tenuis).  Seasonal patterns 

of colonization vary with host plant and mycorrhizal species (Bever et al. 2001) and abiotic 

factors (such as soil moisture) can have a strong influence too (Muthukumar and Udaiyan 

2002). 

There was no significant effect of insect herbivory on total colonization.  Klironomos et al. 

(2004) and Titus and Leps (2000) found that defoliation can affect not just the %RLC but also 

the relative proportions of each structure (spores, vesicles, intraradial hyphae and arbuscules) 

making up the total colonization value.  A further insight into the more subtle impact of insect 

herbivory in the absence of vertebrate grazers came from the proportions of AM structures 

within roots in this study.  It appeared that insects could have had a stressful impact upon 

AMF in roots at certain times of the year (although not seasonally consistent), revealed by 
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high proportions of vesicles (storage structures) relative to arbuscules (Johnson 1993; 

Duckmanton and Widden 1994; Titus and Leps 2000).  Thus, it may be that invertebrate 

herbivory is not consistent in effect, as published studies have found (Gange and Bower 1997; 

Gange et al. 2002; Kula et al. 2005) and may be non-significant in field situations where other 

factors have a greater influence.  It is thought that rabbits masked any invertebrate effects in 

unfenced plots due to the larger quantities and rates of vegetation removal.  It could also have 

been true that the experimental duration was not sufficient for insect effects to become 

significant.  For example, Brown and Gange (1999) found that at least three years were 

required for insect effects on above-ground plant parameters to be seen. 

At Silwood Park the effect of rabbit grazing on mycorrhizal colonization was both 

consistent (plots were located throughout the grasslands on the Silwood estate) and positive.  

These data support the findings from the RHUL field site.  The mycorrhizal status of roots 

seems to respond quickly following initiation of or release from grazing (shown at both field 

sites) and then appears to remain consistent at the new levels over long periods (at least up to 

19 years after exclosure erection at Silwood) as the lack of correlations between mycorrhizal 

colonization and exclosure age could not be explained by variations in soil parameters.  These 

data, concerning rabbit grazing, can be compared with findings relating to other larger 

vertebrate grazers from the (very few) other published studies of this type.  The literature 

shows that ungulate grazing can increase AM colonization, as in this experiment (Reece and 

Bonham 1978; Eom et al. 2001), induce no changes in colonization levels (Wallace 1987) or 

decrease mycorrhizal activity (Bethlenfalvay and Dakessian 1984). 

Where defoliation is severe, it is likely that plants do not allocate as much carbon 

belowground due to photosynthetic reduction (Holland and Detling 1990).  One would 

therefore expect that intense defoliation would always reduce AM colonization.  However, 

two trends emerged in highly grazed plants.  Either a decrease in total AMF colonization 

 16



386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

407 

408 

409 

410 

occurred or no change in total colonization from the increased level elicited under moderate 

grazing but with a decline in the presence of arbuscules.  The question arises as to whether 

changes in colonization were due to different fungal species compositions (numbers of AM 

species and relative representation within roots) colonizing plants grazed at differing 

intensities.  At the extreme, a single species could have dominated following a release from 

competition (Pinior et al. 1999; Saito et al. 2004).  Another possibility is that a change in 

species of mycorrhizas colonizing roots could result from changing carbon availability (Saito 

et al. 2004).  Less carbon-demanding species that can cope with lowered C availability may 

colonize when a plant is releasing less exudates, and other, more demanding species may 

colonize when there is greater assimilate availability in the root zone.  At Silwood, where no 

change in colonization level occurred even when plants were intensely grazed, mycorrhizal 

fungi colonizing the root may have become less beneficial (Gange and Ayres 1999) and/or be 

different (less carbon demanding) species colonizing causing species replacement 

(Bethlenfalvay and Dakessian 1984).   

The two different trends observed under intense grazing may therefore be dependent on the 

species present in the mycorrhizal community itself.  If there is a lack of AM species 

available to cope with low carbon conditions or an initially colonizing species inhibits further 

colonization (Sanders and Fitter 1992) then overall colonization will decline.  Indeed, Eom et 

al. (2001) found that root colonization by AM fungi was greater under moderate and intense 

grazing in a tallgrass prairie when compared to ungrazed sites.  They also discovered that AM 

diversity in terms of species richness and evenness (based on spores present) decreased under 

both moderate and high grazing intensities.  Species richness showed significant reductions in 

both years of their experiment while richness was only significantly altered by year 2, 

possibly indicating a temporal effect for both aspects of diversity to be changed by grazing.  

However, increases in exudation may not be required to cause colonization by certain AM 
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species.  For example, Murray et al. (2004) showed that defoliation of A. capillaris (A. tenuis) 

did not cause a significant difference in overall carbon exudation, yet this species was 

consistently more colonized by AM fungi in grazed samples at Silwood and in the RHUL 

field site.  Therefore, increased exudation may not always be a critical factor (or it may 

simply be an increased carbon supply is given to the fungus without further root exudation if 

there is already a host-fungal partnership established in the root).  The suggestion that 

different species of AMF could have been colonizing grazed and ungrazed plants, or more / 

less AM species colonizing grazed plants, requires molecular analyses of colonized roots (this 

is a focus of our current research) but it is clear that direct observational techniques (i.e. root 

staining and microscopy) are still a key component of assessing the responses of mycorrhizal 

fungi. 
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The effect of grazing on mycorrhizas is important since grasslands have evolved with 

herbivory as a dominant influence shaping the community (Estes et al. 1982; Bardgett and 

Cook 1998).  Grasslands support an active and large subterranean microbial community due 

to high botanical and organic carbon turnover (Bardgett and Cook 1998).  Grasses usually 

form mycorrhizal associations in both agricultural and natural grasslands so their response to 

defoliation is of high importance.  Arbuscular mycorrhizas have been linked to increased 

nutrient acquisition and contribute to competitive ability especially in low fertility 

environments (Saint-Pierre et al. 2004) as well as conferring many other beneficial 

characteristics upon their hosts and increasing soil stability through particle aggregation 

(Miller and Jastrow 1990). 

Temporal scales are an extremely important consideration when interpreting and linking 

above-ground and below-ground facets of ecological systems (Bardgett et al. 2005).  Often, 

changes have been measured a considerable period of time after treatments were imposed 

(e.g. 7 years in Stark and Grellman (2002) and 3-4 years in Alvey et al. (2003)).  The actual 
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time taken for responses to have occured cannot be deduced from such experiments.  By using 

frequent sampling events, this experiment has shown the degree and direction in which AM 

fungi can respond to two different types of above-ground herbivores.  In addition it has 

demonstrated that AM fungi can respond quickly in the highly dynamic plant-soil microbe 

system in the field and (most importantly from a plant community and ecosystem perspective) 

colonization can remain at ‘response levels’ under a sustained above-ground influence over 

many years.  Intermediate timescales such as this are considered the greatest for above-below-

ground interactions to influence ecosystem function through inherent feedback mechanisms 

(Bardgett et al. 2005).  At the finest temporal scales (minutes and hours), even slight changes 

in grazing can cause rapid changes in the quantity and quality of exudative flux and microbial 

responses (Jones et al. 2004; Kuzyakov and Jones 2006).  Results from our study suggest that 

these rapid responses are translated into a consistent response in the field in a matter of weeks 

in terms of mycorrhizal colonization.  Studies on agricultural grazers (e.g. Bardgett et al. 

2001) have shown that large vertebrate herbivores can impact upon soil microbial 

communities; this study has demonstrated that rabbits can structure below-ground microbiota 

too. 
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Figure Legends 596 
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Fig. 1 Changes in live foliar biomass following field manipulations at RHUL, + rabbits + 

insects (■); + rabbits - insects (□); - rabbits + insects (▲); - rabbits – insects (∆). 

 

Fig. 2 

Total mycorrhizal colonization patterns over time at RHUL for each of the three grass species.  

Treatment symbols as in Fig. 1. 

 

Fig. 3 

Proportional representation of total mycorrhizal structures within host roots by arbuscules, for 

each of the three grass species over time at RHUL.  Treatment symbols as in Fig. 1. 

 

Fig. 4 

Proportional representation of total mycorrhizal structures within host roots by vesicles and 

spores, for each of the three grass species over time at RHUL.  Treatment symbols as in Fig. 

1. 

 

Fig. 5 

Proportional representation of total mycorrhizal structures within host roots by hyphae, for 

each of the three grass species over time at RHUL.  Treatment symbols as in Fig. 1. 
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Fig. 6 621 

622 

623 

624 

625 

626 

627 

628 

Mycorrhizal colonization at Silwood Park for each of the three grass species in summer (July) 

and winter (December) 2004.  Unshaded bars represent exclosures and shaded bars represent 

rabbit grazing. 

 

Table 1 

Summary of ANOVA results investigating the effects of grazing and plot age on mycorrhizal 

colonization at Silwood Park. 
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Fig. 1 629 
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Fig. 2 632 
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Fig. 3 634 
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Fig. 4 636 
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Fig. 5 638 
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Fig. 6 640 
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Table 1 642 

643 July 2004 

 
Grazing 

F 

 

P 

Plot age 

F 

 

P 

Grazing   x 

F 

Plot age 

P 

A. odoratum 128.3 < 0.01 0.96 n.s. 0.62 n.s. 

A. tenuis 43.22 < 0.05 1.19 n.s. 0.76 n.s. 

H. mollis 6.00 n.s. 2.36 n.s. 1.74 n.s. 

644 

645 

646 

df = 1,2 for grazing.  For A. odoratum df = 3,6 for plot age and the interaction term.  For A. tenuis, H. 

mollis df = 4, 8 for plot age and the interaction term. 

December 2004 

 
Grazing 

F 

 

P 

Plot age 

F 

 

P 

Grazing   x 

F 

Plot age 

P 

A. odoratum 17.44 < 0.05 4.06 n.s. 0.80 n.s. 

A. tenuis 3.95 n.s. 3.95 n.s. 0.11 n.s. 

H. mollis 2456.2 < 0.001 1.09 n.s. 0.18 n.s. 

647 

648 

649 

df = 1,2 for grazing.  For A. odoratum df = 3,6 for plot age and the interaction term.  For A. tenuis, H. 

mollis df = 4, 8 for plot age and the interaction term. 
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